The Probabilistic Active Shape Model: From Model Construction to Flexible Medical Image Segmentation
نویسندگان
چکیده
Automatic processing of three-dimensional image data acquired with computed tomography or magnetic resonance imaging plays an increasingly important role in medicine. For example, the automatic segmentation of anatomical structures in tomographic images allows to generate three-dimensional visualizations of a patient’s anatomy and thereby supports surgeons during planning of various kinds of surgeries. Because organs in medical images often exhibit a low contrast to adjacent structures, and because the image quality may be hampered by noise or other image acquisition artifacts, the development of segmentation algorithms that are both robust and accurate is very challenging. In order to increase the robustness, the use of model-based algorithms is mandatory, as for example algorithms that incorporate prior knowledge about an organ’s shape into the segmentation process. Recent research has proven that Statistical Shape Models are especially appropriate for robust medical image segmentation. In these models, the typical shape of an organ is learned from a set of training examples. However, Statistical Shape Models have two major disadvantages: The construction of the models is relatively difficult, and the models are often used too restrictively, such that the resulting segmentation does not delineate the organ exactly. This thesis addresses both problems: The first part of the thesis introduces new methods for establishing correspondence between training shapes, which is a necessary prerequisite for shape model learning. The developed methods include consistent parameterization algorithms for organs with spherical and genus 1 topology, as well as a nonrigid mesh registration algorithm for shapes with arbitrary topology. The second part of the thesis presents a new shape model-based segmentation algorithm that allows for an accurate delineation of organs. In contrast to existing approaches, it is possible to integrate not only linear shape models into the algorithm, but also nonlinear shape models, which allow for a more specific description of an organ’s shape variation. The proposed segmentation algorithm is evaluated in three applications to medical image data: Liver and vertebra segmentation in contrast-enhanced computed tomography scans, and prostate segmentation in magnetic resonance images.
منابع مشابه
A Generic Probabilistic Active Shape Model for Organ Segmentation
Probabilistic models are extensively used in medical image segmentation. Most of them employ parametric representations of densities and make idealizing assumptions, e.g., normal distribution of data. Often, such assumptions are inadequate and limit a broader application. We propose here a novel probabilistic active shape model for organ segmentation, which is entirely built upon non-parametric...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملMedical Image Segmentation using Level Sets
Segmentation is a vital aspect of medical imaging. It aids in the visualization of medical data and diagnostics of various dieses. This report presents an implementation of a level set approach for active contour image segmentation. This method is originally developed by Osher and Sethian and then applied to image segmentation by Malladi. No requirements about objects’ shape and allowance for v...
متن کاملStatistical shape models for 3D medical image segmentation: A review
Statistical shape models (SSMs) have by now been firmly established as a robust tool for segmentation of medical images. While 2D models have been in use since the early 1990 s, wide-spread utilization of three-dimensional models appeared only in recent years, primarily made possible by breakthroughs in automatic detection of shape correspondences. In this article, we review the techniques requ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013